Abstract

This article covers the design of highly integrated gate drivers and level shifters for high-speed, high power efficiency and dv/dt robustness with focus on automotive applications. With the introduction of the 48 V board net in addition to the conventional 12 V battery, there is an increasing need for fast switching integrated gate drivers in the voltage range of 50 V and above. State-of-the-art drivers are able to switch 50 V in less than 5 ns. The high-voltage electrical drive train demands for galvanic isolated and highly integrated gate drivers. A gate driver with bidirectional signal transmission with a 1 MBit/s amplitude modulation, 10/20 MHz frequency modulation and power transfer over one single transformer will be discussed. The concept of high-voltage charge storing enables an area-efficient fully integrated bootstrapping supply with 70 % less area consumption. EMC is a major concern in automotive. Gate drivers with slope control optimize EMC while maintaining good switching efficiency. A current mode gate driver, which can change its drive current within 10 ns, results in 20 dBuV lower emissions between 7 and 60 MHz and 52 % lower switching loss compared to a conventional constant current gate driver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call