Abstract

We present progress in the development of artificial photosynthesis, as a means to harvesting and storage of solar energy. The plan is to compose molecular systems that combine known photochemistry with emerging functional model compounds. A photochemical device for solar energy conversion contains a photosensitizer, an electron acceptor system and a donor system that prevents charge recombination. Our goal is to utilize water as sacrificial electron donor, which will allow a net production of reducing equivalents, and the ultimate production of fuel. The only light-driven molecular catalyst for water oxidation exists in Photosystem II (PSII), which has a tetranuclear Mn-cluster in the active site. Here we present several Mn-compounds, that we have developed for the purpose of creating water-oxidizing catalysts. Our idea is to link Ru-tris(bipyridine) derivatives, which mimicks the function of the primary donor in PS II, with manganese complexes, mimicking the tetra-Mn cluster on the PSII donor side. We have constructed a number of heteronuclear complexes, containing a Ru-photosensitizer and various Mn-complexes. The compounds have been characterized with regards to their photophysical and photochemical properties, redox potentials and structure. The most promising compounds are capable of undergoing several electron transfers from the Mn-complex to the photosensitizer, leaving 3 to 4 oxidizing equivalents on the Mn. In the latest development, we have constructed ligands that stabilize higher oxidation states in Mn, in order to promote formation of Mn(V) which many believes is an intermediate in the water oxidation mechanism. (Less)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call