Abstract

Efficient xylose utilization is critical for the production of fuels from biomass hydrolysates. It is known that xylose catabolism is inhibited by glucose. In this study, we showed that ethanol also inhibits xylose catabolism. By introducing a xylose metabolic pathway into Saccharomyces cerevisiae and using evolutionary engineering, an engineered S. cerevisiae strain, W32N55, was obtained that can anaerobically ferment xylose to ethanol. The effect of ethanol on xylose utilization was investigated. The results showed that xylose catabolism was inhibited upon the addition of ethanol, and it resumed once ethanol was removed. Based on these results, a fermentation–pervaporation coupling process was developed. After the in situ removal of ethanol, 150g/L glucose and 31g/L xylose were consumed in 72h, providing a total of 76g/L ethanol and an overall total sugar yield of 0.42g/g. We believe that this strain will be valuable to the bio-ethanol industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.