Abstract

High-entropy alloys (HEAs) are inherently complex and potentially span a vast composition space, making their research and discovery challenging. In the present study, high-throughput synthesis of an Alx(CoCrFeNi)100-x combinatorial material library covering x = 4.5–40 atomic percent Al is achieved, using magnetron co-sputtering. The effects of Al on the microstructure and corrosion behavior are investigated. With the increased amount of Al, crystal-structures of thin films transform from face-centered cubic (FCC) to body-centered cubic (BCC). Both the FCC and BCC thin films demonstrate a uniform elemental distribution. Corrosion characteristics of combinatorial samples immersed in the 3.5 wt% (wt%) NaCl solution are evaluated via electrochemical tests. Complementary X-ray photoelectron spectroscopy analysis reveals the compositional variation of passivated films formed on the sample surface after immersion. The results show that the Alx(CoCrFeNi)100-x HEA thin films possess outstanding corrosion-resistant properties, but the resistance diminishes with the increasing Al content. The decreased corrosion resistance is revealed to be directly related to the constituents of passivated films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call