Abstract

HIV-1 pretreatment drug resistance (PDR) is a global concern. Our aim was to evaluate high-throughput sequencing (HTS) for HIV-1 resistance testing and describe PDR in Sweden, where 75% of diagnosed individuals are foreign-born. Cross-sectional study. Individuals entering HIV-1 care in Sweden 2017 to March 2019 (n = 400) were included if a viremic sample was available (n = 220). HTS was performed using an in-house assay. Drug resistance mutations (DRMs) (based on Stanford HIV DB vs. 8.7) at levels 1-5%, 5-19% and at least 20% of the viral population were described. Results from HTS and routine Sanger sequencing were compared. HTS was successful in 88% of patients, 92% when viral load was at least 1000 copies/ml. DRMs at any level in protease and/or reverse transcriptase were detected in 95 individuals (49%), whereas DRMs at least 20% in 35 (18%) individuals. DRMs at least 20% correlated well to findings in routine Sanger sequencing. Protease/reverse transcriptase (PR/RT) DRMs at least 20% were predicted by treatment exposure; adjusted OR 9.28 (95% CI 2.24-38.43; P = 0.002) and origin in Asia; adjusted OR 20.65 (95% CI 1.66-256.24; P = 0.02). Nonnucleoside reverse transcriptase inhibitor (NNRTI) DRMs at least 20% were common (16%) and over-represented in individuals originating from sub-Saharan Africa or Asia. Low-level integrase strand transfer inhibitor (INSTI) DRMs less than 20% were detected in 15 individuals (8%) with no association with INSTI exposure. Our HTS can efficiently detect PDR and findings of DRMs at least 20% compare well to routine Sanger sequencing. The high prevalence of PDR was because of NNRTI DRMs and associated with migration from areas with emerging PDR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call