Abstract
This work describes a three-times ($3\times$) improvement to the performance of secure computation of AES over a network of three parties with an honest majority. The throughput that is achieved is even better than that of computing AES in some scenarios of local (non-private) computation. The performance improvement is achieved through an optimization of the generic secure protocol, and, more importantly, through an optimization of the description of the AES function to support more efficient secure computation, and an optimization of the protocol to the underlying architecture. This demonstrates that the development process of efficient secure computation must include adapting the description of the computed function to be tailored to the protocol, and adapting the implementation of the protocol to the architecture. This work focuses on the secure computation of AES since it has been widely investigated as a de-facto standard performance benchmark for secure computation, and is also important by itself for many applications. Furthermore, parts of the improvements are general and not specific to AES, and can be applied to secure computation of arbitrary functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.