Abstract

The geometrical-topological approach based on the Voronoi partition theory has been applied in a high-throughput search for new potential potassium solid electrolytes. After screening the Inorganic Crystal Structure Database (release 2017/2), we have selected 374 ternary and quaternary potassium- and oxygen-containing compounds possessing one-, two- or three-periodic K+-ion migration maps (143, 92, and 139 compounds, respectively). Out of them, 280 compounds have not been mentioned in the literature as K+-ion conductors. We evaluated the migration energies for 18 selected compounds by the nudged elastic band method within the density functional theory (DFT) approach, and found the energies varying in a wide range (0.064–0.838 eV) and confirming the results of the geometrical-topological approach. The combination of the fast geometrical-topological approach and precise DFT modeling is proved promising for prediction of ion conductivity in crystalline solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.