Abstract
Metal oxides are promising materials for solar water splitting. To identify suitable materials within the ternary system FeWO, thin-film material libraries with combined thickness and compositional gradients were synthesized by combinatorial reactive magnetron sputtering. These libraries (>1000 different samples) were investigated by means of structural and functional high-throughput characterization techniques to establish correlations between composition, crystallinity, morphology, thickness, and photocurrent density in the compositional range between (Fe6 W94 )Ox and (Fe61 W39 )Ox . In addition to the well-known phase WO3 , the binary phase W5 O14 and the ternary phase Fe2 O6 W show enhanced photoelectrochemical activity. The highest photocurrent density of 65 μA cm(-2) was achieved for the composition (Fe15 W85 )Ox , which contains the W5 O14 phase and has a thickness of 1060 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.