Abstract

We describe a microarray-based approach for the high-throughput screening of gene function in stem cells and demonstrate the potential of this method by growing and isolating clonal populations of both adult and embryonic neural stem cells. Clonal microarrays are constructed by seeding a population of cells at clonal density on micropatterned surfaces generated using soft lithographic microfabrication techniques. Clones of interest can be isolated after assaying in parallel for various cellular processes and functions, including proliferation, signal transduction, and differentiation. We demonstrate the compatibility of the technique with both gain- and loss-of-function studies using cell populations infected with cDNA libraries or DNA constructs that induce RNA interference. The infection of cells with a library prior to seeding and the compact but isolated growth of clonal cell populations will facilitate the screening of large libraries in a wide variety of mammalian cells, including those that are difficult to transfect by conventional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.