Abstract

Efficient single-atom electrocatalysts show great potential for application in the field of renewable energy. In this work, dispersion-corrected density functional theory (DFT) calculations based on high-throughput screening were used to identify effective graphdiyne (GDY) supported single-atom electrocatalysts (SAECs) for water electrolysis and the oxygen reduction reaction (ORR). The solvation effect on the electrocatalytic performance of the catalysts was carefully discussed. A general design principle was established to evaluate the activities of TM@GDY SAECs for ORR and oxygen evolution reaction (OER). ΔGOH* could serve as the sole descriptor for the onset potential of OER and ORR. Additionally, a universal structural descriptor φ, which is strongly related to ΔGOH*, was identified. This descriptor only includes intrinsic features such as the number of electrons in d orbitals and elemental electronegativity. Consequently, a structure-activity volcano was plotted. Combined with the electronic properties calculations, the mechanism behind the relationship between ΔGOH* and descriptor φ was deeply analyzed. Among the investigated candidates, TM@GDY (TM = Ni, Pt, Pd, Cu, Co, Rh, and Ag) are potential bifunctional electrocatalysts for OER and ORR. Three non-noble metal-based SAECs (Ni@GDY, Co@GDY, and Cu@GDY) and two noble metal-based SAECs (Rh@GDY and Ag@GDY) are potential trifunctional electrocatalysts for OER, ORR, and the hydrogen evolution reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.