Abstract

Hundreds of covalent organic frameworks (COFs) have been synthesized, and thousands of them have been computationally designed. However, it is impractical to experimentally test each material as a membrane for gas separations. In this work, we focused on the membrane-based gas separation performances of experimentally synthesized COFs and hypothetical COFs (hypoCOFs). Gas permeabilities of COFs were computed by combining the results of grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, and many COF membranes were found to overcome the upper bound of polymeric membranes for He/H2, N2/CH4, H2/N2, He/CH4, H2/CH4, and He/N2 separations. We then examined the structure–permeability relations of the COF membranes that are above the upper bound for each of the six gas separations, and based on these relations, we proposed an efficient approach for the selection of the best hypoCOFs from a very large database. Molecular simulations showed that 120 hypoCOFs that we identified to be promising based on these structure–performance relations exceed the upper bound for He/CH4, He/N2, H2/CH4, and H2/N2 separations. Both real and hypothetical COFs were then studied as fillers in 25 different polymers, leading to a total of 29 020 COF/polymer and hypoCOF/polymer mixed matrix membranes (MMMs), representing the largest number of COF-based MMMs investigated to date. Permeabilities and selectivities of COF/polymer MMMs were computed for six different gas separations, and results revealed that 18 of the 25 polymers can be carried above the upper bound when COFs were used as fillers. The comprehensive analysis of COFs provided in this work will fully unlock the potential of COF membranes and COF/polymer MMMs for helium separation and hydrogen purification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call