Abstract

Marburg virus (MARV) causes sporadic outbreaks of severe disease with high case fatality rates in humans. To date, neither therapeutics nor prophylactic approaches have been approved for MARV disease. The MARV matrix protein VP40 (mVP40) plays central roles in virus assembly and budding. mVP40 also inhibits interferon signaling by inhibiting the function of Janus kinase 1. This suppression of host antiviral defenses likely contributes to MARV virulence and therefore is a potential therapeutic target. We developed and optimized a cell-based high-throughput screening (HTS) assay in 384-well format to measure mVP40 interferon (IFN) antagonist function such that inhibitors could be identified. We performed a pilot screen of 1280 bioactive compounds and identified 3 hits, azaguanine-8, tosufloxacin hydrochloride, and linezolid, with Z scores > 3 and no significant cytotoxicity. Of these, azaguanine-8 inhibited MARV growth at noncytotoxic concentrations. These data demonstrate the suitability of the HTS mVP40 assay for drug discovery and suggest potential directions for anti-MARV therapeutic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.