Abstract
The process of validating an assay for high-throughput screening (HTS) involves identifying sources of variability and developing procedures that minimize the variability at each step in the protocol. The goal is to produce a robust and reproducible assay with good metrics. In all good cell-based assays, this means coefficient of variation (CV) values of less than 10% and a signal window of fivefold or greater. HTS assays are usually evaluated using Z' factor, which incorporates both standard deviation and signal window. A Z' factor value of 0.5 or higher is acceptable for HTS. We used a standard HTS validation procedure in developing small interfering RNA (siRNA) screening technology at the HTS center at Southern Research. Initially, our assay performance was similar to published screens, with CV values greater than 10% and Z' factor values of 0.51 ± 0.16 (average ± standard deviation). After optimizing the siRNA assay, we got CV values averaging 7.2% and a robust Z' factor value of 0.78 ± 0.06 (average ± standard deviation). We present an overview of the problems encountered in developing this whole-genome siRNA screening program at Southern Research and how equipment optimization led to improved data quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.