Abstract

Assays comprising three probes for different mechanisms of antioxidant activity in food products have been modified to allow better comparison of the contributions of the different mechanisms to antioxidant capacity (AOC). Incorporation of a common format for oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), and iron(II) chelating activity (ICA) assays using 96-well microplates provides a comprehensive and high-throughput assessment of the antioxidant capacity of food extracts. The methods have been optimized for aqueous extracts and validated in terms of limit of quantification (LoQ), linearity, and precision (repeatability and intermediate reproducibility). In addition, FRAP and ORAC assays have been validated to assess AOC for lipophilic extracts. The relative standard deviation of repeatability of the methods ranges from 1.2 to 6.9%, which is generally considered to be acceptable for analytical measurement of AOC by in vitro methods. Radical scavenging capacity, reducing capacity, and iron chelating properties of olive mill wastewaters (OMWW), oregano, and parsley were assessed using the validated methods. OMWW showed the highest radical scavenging and reducing capacities, determined by ORAC and FRAP assays, respectively, followed by oregano and parsley. The ability to chelate Fe (2+) was, in decreasing order of activity ( p > 0.05) parsley congruent with oregano > OMWW. Total phenol content, determined by the Folin-Ciocalteu method, correlated to the radical scavenging and reducing capacities of the samples but not to their chelating properties. Results showed that the optimized high-throughput methods provided a comprehensive and precise determination of the AOC of lipophilic and hydrophilic food extracts in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.