Abstract

This paper demonstrates the feasibility of high-throughput investigation of ionic conductivity in oxygen-ion conductors. Yttria stabilized zirconia (YSZ) composition-spread thin films with nanometer-size grains were prepared by 90° off-axis reactive RF cosputtering. We compare results for two electrode configurations, namely, out-of-plane (parallel plate) and in-plane (planar interdigitated electrode) and find that the contribution from the intragrain conductivity in YSZ thin films (150 nm) is more explicit in the latter configuration because it greatly diminishes electrode effects. The intragrain oxygen ion conductivity of thin film YSZ was systematically measured as a function of yttria concentration over the range 2 mol % to 12 mol %. The results show that the measured conductivity of the YSZ thin films is close to that of corresponding bulk materials with a peak value around 3 × 10⁻⁴ S cm⁻¹ at 440 °C at the optimum Y₂O₃ concentration of 8 mol %. Validation of this technique means that it can be applied to novel chemical systems for which systematic bulk measurements have not been attempted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call