Abstract
We report on the development of a parallel HPLC/MS purification system incorporating an indexed (i.e., multiplexed) ion source. In the method described, each of the flow streams from a parallel array of HPLC columns is directed toward the multiplexed (MUX) ion source and sampled in a time-dependent, parallel manner. A visual basic application has been developed and monitors in real-time the extracted ion current from each sprayer channel. Mass-directed fraction collection is initiated into a parallel array of fraction collectors specific for each of the spray channels. In the first embodiment of this technique, we report on a four-column semipreparative parallel LC/MS system incorporating MUX detection. In this parallel LC/MS application (in which sample loads between 1 and 10 mg on-column are typically made), no cross talk was observed. Ion signals from each of the channels were found reproducible over 192 injections, with interchannel signal variations between 11 and 17%. The visual basic fraction collection application permits preset individual start collection and end collection thresholds for each channel, thereby compensating for the slight variation in signal between sprayers. By incorporating postfraction collector UV detection, we have been able to optimize the valve-triggering delay time with precut transfer tubing between the mass spectrometer and fraction collectors and achieve recoveries greater than 80%. Examples of the MUX-guided, mass-directed fraction purification of both standards and real library reaction mixtures are presented within.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.