Abstract
Monitoring extracellular pH (pHe) is important for biology understanding, since pHe and its homeostasis are closely relevant to cellular metabolism. Hydrogel-based pHe sensors have attracted significant attention and showed wide application, while they are tedious with significant time-cost operation and reproducibility variations for high-throughput application. Herein, we synthesized two polymers for pHe monitoring which are soluble in water at room temperature with easy operations and high reproducibility among various micro-plate wells for high-throughput analysis. P1 (P(OEGMA-co-MEO2MA-co-pHS)) and P2 (P(OEGMA-co-pHS)) were synthesized via the Reversible Addition Fragmentation Chain Transfer (RAFT) copolymerization of oligo(ethylene glycol) methacrylate (OEGMA), 2-(2'-methoxyethoxy) ethyl methacrylate (MEO2MA) and the pH sensitive fluorescence moiety N-fluoresceinyl methacrylamide (pHS). P1 is soluble in water at room temperature (25 °C) while insoluble at the temperature above 33 °C, indicating its feature of lower critical solution temperature (LCST) at 33 °C. Further P1 showed higher pH sensitivity and photostability than P2 (without LCST property) when used at physiological temperature (37 °C). Thus, P1 was chosen to in-situ monitor the micro-environmental acidification of E. coli, Hela and Ramos cells during their growth, and the metabolism inhibiting activity of a representative antibiotic, ampicillin. Cell concentration-dependent cellular acidification and drug concentration-dependent inhibition of cellular acidification were observed, demonstrating that the LCST polymer (P1) is suitable for real-time cellular acidification monitoring as well as for high-throughput drug screening. This study firstly demonstrated the use of a LCST polymeric sensor for high-throughput screening of antibiotics and investigation of cell metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.