Abstract

This paper presents a high-throughput deblocking filter accelerator which can process one macro block (MB) within 48 cycles for H.264/AVC/SVC. This innovation is achieved by considering both luminance and chrominance data together in arranging the filtering schedule. Cooperating with the filtering schedule, the proposed quadruple-filter-based architecture can simultaneously execute filtering of four edges. Besides, interleaved memory organization is adopted to eliminate all the data conflicts. This design keeps the input/output data order compliant with the raster scanning order so that no additional interfacing overhead is required for reordering the primary input and output data. After being implemented by using a 0.18-μm CMOS technology, this work can achieve the real-time performance requirement of 6K (6000 × 4000@30fps) format when operated at 135 MHz frequency at the cost of 41.6k gates along with 640 bytes single-port SRAM. Compared with previous works, the proposed design not only achieves higher real-time performance requirements but also possesses higher hardware computing efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.