Abstract

The aim of the present study was to demonstrate the application of an automated high-throughput (HT) dissolution method as a useful screening tool for characterization of controlled release pellets in the formulation development phase. Five controlled release pellet formulations with drug substances exhibiting high or low solubility were chosen to investigate the correlation of the automated HT dissolution method with the conventional dissolution testing. Overall, excellent correlations (R2 > 0.96) between the HT and the conventional dissolution method were obtained. In one case the initial unsatisfactory correlation (R2 = 0.84) and poor method agreement (SD = 12.5) was improved by optimizing the HT dissolution method with design of experiment approach. Here in comparison to initial experimental HT dissolution settings, increased amount of pellets (25% of the capsule filling mass), lower temperature (22 °C) and no shaking resulted in significantly better correlation (R2 = 0.97) and method agreement (SD = 5.3). These results show that such optimization is valuable for the development of HT dissolution methods. In conclusion, the high correlation of dissolution profiles obtained from the conventional and the automated HT dissolution method combined with low within-sample and measurement system variability, justifies the utilization of the automated HT dissolution method during development phase of controlled release pellets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.