Abstract

AbstractClassification of isolates into vegetative compatibility groups (VCGs) using nitrate‐non‐utilizing (nit) mutants has been widely used for the characterization of Verticillium dahliae populations. However, certain methodological limitations prevent its application on a large scale. Furthermore, systematic investigations into the genetics underlying complementation tests between nit mutants of fungal isolates (i.e. heterokaryon formation) are lacking for Verticillium species. In this work, a diverse collection of 27 V. dahliae isolates – including representatives of all VCGs, both mating types, and heterokaryon self‐incompatible isolates – was employed for the development and optimization of (i) a protocol for the rapid generation of nit mutants of V. dahliae isolates using UV‐irradiation and (ii) a reproducible high‐throughput procedure for complementation tests between nit mutants in liquid cultures using 96‐well microplates. The genetic analysis of selected heterokaryons demonstrated that the frequently encountered ‘weak’ cross‐reactions between VCGs and their subgroups can be actually heterokaryotic, implying the absence of strict genetic barriers between VCGs. In conclusion, we provide in this work an optimized method for the high‐throughput VCG assignment of V. dahliae populations and a genetic analysis of heterokaryons that may have serious implications for the interpretation of VCG classification data. These advancements in the available methodology and the genetic background of vegetative compatibility grouping may contribute to a better understanding of the population biology of V. dahliae and possibly other mitosporic fungi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.