Abstract

Molecular imaging allows for the visualization of changes at the cellular level in diseases such as cancer. A successful molecular imaging agent must rely on disease-selective targets and ligands that specifically interact with those targets. Unfortunately, the translation of novel target-specific ligands into the clinic has been frustratingly slow with limitations including the complex design and screening approaches for ligand identification, as well as their subsequent optimization into useful imaging agents. This review focuses on combinatorial library approaches towards addressing these two challenges, with particular focus on phage display and one-bead one-compound (OBOC) libraries. Both of these peptide-based techniques have proven successful in identifying new ligands for cancer-specific targets and some of the success stories will be highlighted. New developments in screening methodology and sequencing technology have pushed the bounds of phage display and OBOC even further, allowing for even faster and more robust discovery of novel ligands. The combination of multiple high-throughput technologies will not only allow for more accurate identification, but also faster affinity maturation, while overall streamlining the process of translating novel ligands into clinical imaging agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.