Abstract
Targeted proteomics methods have been greatly improved and refined over the last decade and are becoming increasingly the method of choice in protein and peptide quantitative assays. Despite the tremendous progress, targeted proteomics assays still suffer from inadequate sensitivity for lower abundant proteins and throughput, especially in complex biological samples. These attributes are essential for establishing targeted proteomics methods at the forefront of clinical use. Here, we report an assay utilizing the SureQuantTM internal standard triggered targeted method on a newest generation mass spectrometer coupled with a FAIMS (high-field asymmetric waveform ion mobility spectrometry) interface ion mobility device and an EvoSep One liquid chromatography platform, which displays markedly enhanced sensitivity and a high throughput of 100 samples per day. We demonstrate the robustness of this method by quantifying proteins ranging six orders of magnitude in human wound fluid exudates, a biological fluid that exhibits sample complexity and composition similar to plasma. Among the targets quantified were low-abundance proteins such at TNFA and IL1B, highlighting the value of this method in the quantification of trace amounts of invaluable biomarkers that were until recently hardly accessible by targeted proteomics methods. Taken together, this method extends the toolkit of targeted proteomics assays and will help to drive forward mass spectrometry-based proteomics biomarker quantification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.