Abstract

As a promising thermoelectric material, tin selenide (SnSe) is of relatively low thermal conductivity. However, the phonon transport mechanisms in SnSe are not fully understood due to the complex phase transition, dynamical instability, and strong anharmonicity. In this work, we perform molecular dynamics simulations with a machine-learning interatomic potential to explore the thermal transport properties of SnSe at different temperatures. The developed interatomic potential is parameterized using the framework of moment tensor potential, exhibiting satisfactory predictions on temperature-dependent lattice constants and phonon dispersion, as well as phase transition temperature. From equilibrium molecular dynamics simulations, we obtained the thermal conductivity tensor from 200 K to 900 K. The origins of temperature-dependent thermal conductivity anisotropy and the roles of four-phonon scatterings are identified. The obtained interatomic potential can be utilized to study the mechanical and thermal properties of SnSe and related nanostructures in a wide range of temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.