Abstract

The effect of elevated temperatures on the optical and structural stability of MoSi<sub>2</sub>/Si and Mo/C/Si/C multilayer coatings was investigated. The multilayer mirrors were designed for normal-incidence reflectivity at a wavelength of about 13.5 nm. The multilayers were deposited by dc-magnetron sputtering and subsequently annealed at temperatures of 400 °C and 500 °C for 1, 10 and 100 hours. X-ray scattering, transmission electron microscopy, atomic force microscopy and normal-incidence reflectivity measurements were used for the characterization of the multilayer structures. We achieved maximal normal-incidence reflectivities of 41.2 % and 59.6 % for as-deposited MoSi<sub>2</sub>/S and Mo/C/Si/C multilayer mirrors. While the optical properties of Mo/C/Si/C multilayers changed monotonically during annealing time at temperatures of more than 400 °C, the MoSi<sub>2</sub>/Si multilayers showed a superior thermal stability up to 500 °C. New barrier layer materials were also suggested to enhance the thermal stability of Mo/Si multilayers. Interface-engineered Mo/Si multilayer mirrors were designed to combine both a high reflectivity of more than 60 % at 13.5 nm and a superior long-term thermal stability of up to 500 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.