Abstract

With a high-temperature, high-pressure hydrothermal technique, a new barium lead borate, [Ba3Pb(H2O)][B11O19(OH)3] (1), has been synthesized and characterized by single-crystal X-ray diffraction, and infrared and solid-state NMR spectroscopy. The structure of 1 contains planar thick layers of borates with the Ba2+ cations at sites in the inter- and intralayer space. Each layer consists of three single sheets. The central sheet is very corrugated and is built up from the fundamental building block (FBB) 2Δ3□:Δ2□-Δ2□. On both sides of the central sheet there are borate single chains formed of the very rare FBB 2Δ4□:Δ2□-3□Δ via corner-sharing. This FBB was first observed in a high-pressure polymorph of CaB2O4. These chains are linked into a sheet by PbO5(H2O) polyhedra, which are further linked to the central sheet by sharing vertices between triangles and tetrahedra to form a thick layer. The IR spectrum shows the presence of hydroxyl groups of HBO4, water molecules, BO3 triangles, and BO4 tetrahedra. The presence of BO3 and BO4 polyhedra was also confirmed by 11B MAS NMR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.