Abstract
A new uranium(VI) silicate, Cs(2)UO(2)Si(10)O(22), has been synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction, luminescence, and solid state NMR spectroscopy. It crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 12.2506(4) Å, b = 8.0518(3) Å, c = 23.3796(8) Å, β = 90.011(2)°, and Z = 4. Its structure consists of silicate double layers in the ab plane which are connected by UO(6) tetragonal bipyramids via four equatorial oxygen atoms to form a 3D framework with nine-ring channels parallel to the b axis where the Cs(+) cations are located. The photoluminescence emission spectrum at room temperature consists of one broad structured band which is typical of uranyl. The (29)Si MAS NMR spectrum is consistent with the crystal structure as determined from X-ray diffraction, and the resonances in the spectrum are assigned. A comparison of related uranyl silicate structures is made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.