Abstract
For the development of high-performance spintronic nanodevices, one of the most urgent and challenging tasks is the preparation of two-dimensional materials with room-temperature ferromagnetism and a large magnetic anisotropic energy (MAE). Through first-principles swarm-intelligence structural search calculations, we identify an ideal ferromagnetic Fe3P monolayer, in which Fe atoms show a perfect Kagome lattice, leading to strong in-plane Fe-Fe coupling. The predicted Curie temperature of Fe3P reaches ∼420 K, and its MAE is comparable to those of ferromagnetic materials, such as Fe and Fe2Si. Moreover, the Fe3P monolayer remains as an above room-temperature ferromagnet under biaxial strains as large as 10%. Its lattice can be retained at temperatures of ≤1000 K, exhibiting a high thermodynamic stability. All of these desirable properties make the Fe3P monolayer a promising candidate for applications in spintronic nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.