Abstract

The Early Miocene Tateyamazaki Dacite infills a 3.2 km diameter caldera. It comprises poorly sorted, massive, biotite-bearing dacite pumice lapilli tuff, in which huge blocks of densely welded dacite lapilli tuff, basaltic andesite lava, and other lithologies are commonly set. Dense blocks are variably cracked and intruded by the host lapilli tuff. Sparse blocks of bedded lapilli tuff and tuff are variably disaggregated to intermingle with the host rocks or are plastically deformed into irregular shapes. Rootless tuff veins millimeters to 30 cm thick are developed within the host rocks, mainly dipping at 10–30°, and are locally branched and mutually cut to form a network. Where thicker, they are stratified and locally carry accidental fragments. Accidental lapilli up to 2 or 3 cm wide and 30 cm long are locally set in near-vertical and variably sinuous arrays. Although poorly defined they are reminiscent of fluid escape structures. The host pumice lapilli tuff, however, retains in part a thermal remnant magnetization (TRM) vector stable at temperatures above 280 °C. Blocks in the caldera fill also retain TRM but the vectors are rotated significantly from those of the host pumice lapilli tuff and the adjacent volcanic rocks. Tateyamazaki Dacite is thus likely to have been emplaced at high temperatures, and intermingled with shattered basement rocks and ambient water to be partly liquefied within the caldera immediately after or during the caldera-forming eruption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call