Abstract
Finite-temperature magnetic properties of iron thin films are investigated by computer simulation over a broad range of temperatures up to the point of the ferromagnetic–paramagnetic phase transition. The coupled dynamics of atoms and magnetic moments is treated using the large-scale spin–lattice dynamics (SLD) algorithm. We investigate surface and bulk magnetic properties of iron, and how these properties vary as a function of temperature, film thickness and surface crystallography. We find that magnetization at surfaces is enhanced at low temperatures and suppressed at higher temperatures, in agreement with experimental observations. The effective Curie temperature of a film decreases as a function of thickness. Short-range magnetic order and non-vanishing spin–spin spatial correlations are found above the Curie temperature. The spin autocorrelation functions exhibit slower oscillations with longer decoherence times near the surface. We also find that the directional spin disorder has a significant effect on the surface strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.