Abstract

The creep behavior of an Al-8.5Fe-1.3V-1.7Si alloy processed by rapid solidification is investigated at three temperatures ranging from 623 to 723 K. The measured minimum creep strain rates cover seven orders of magnitude. The creep behavior is associated with the true threshold stress, decreasing with increasing temperature more strongly than the shear modulus of aluminum. The minimum creep strain rate is controlled by the lattice diffusion in the alloy matrix, and the true stress exponent is close to 5. The apparent activation energy of creep depends strongly on both applied stress and temperature and is generally much higher than the activation enthalpy of lattice self-diffusion in aluminum. Also, the apparent stress exponent of minimum creep strain rate depends on applied stress as well as on temperature and is generally much higher than the true stress exponent. This behavior of both the apparent activation energy and apparent stress exponent is accounted for by the strong temperature dependence of the threshold stress-to-shear modulus ratio. The true threshold creep behavior of the alloy is interpreted in terms of athermal detachment of dislocations from fine incoherent Al12(Fe, V)3Si phase particles, admitting a temperature dependence of the relaxation factor characterizing the strength of the attractive dislocation/particle interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call