Abstract
The reaction of SO2 with fly ash in the presence of O2 and H2O involves a series of reactions that lead to the formation of SO3 and eventually H2SO4. Homogeneous experiments were conducted to evaluate the effects of the procedural variables, i.e., temperature, gas concentrations, and residence time, on the post-combustion conversion of SO2 to SO3. The results were compared to existing global kinetics and found to be dependent upon SO2, O2, residence time, and temperature and independent of H2O content. For a residence time of 1 s, temperatures of about 900 °C are needed to have an observable conversion of SO2 to SO3. Literature suggested that the conversion of SO2 to SO3 is dependent upon the iron oxide content of the fly ash. Experiments using three different fly ash samples from Australian sub-bituminous coals were used to investigate the catalytic effects of fly ash on SO2 conversion to SO3 at a temperature range of 400–1000 °C. It was observed that fly ash acts as a catalyst in the formation of SO3, w...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.