Abstract

Tensile experiments of three-dimensional needled C/C-SiC composite from room temperature to 1800℃ were performed to investigate tensile behavior. The damage characteristics and macroscopic mechanical behavior of the composite are relevant to the testing temperature and off-axis angles of the tensile loading. The tensile strength increased while the modulus decreased with the increase of temperature. A high-temperature nonlinear constitutive model was established to analyze the nonlinear stress–strain relationship of the composite. Plastic strain accumulation and stiffness degeneration were described by the plasticity and damage theories. The effect of temperature on the tensile behavior of the composite was particularly considered in this model by introducing a thermal damage variable. The proposed constitutive model can predict the stress–strain behavior of the material subjected to different off-axis tensile load, and at different temperatures. Fairly good agreement was achieved between the predicted and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.