Abstract

The high-temperature capability and workability of cobalt-tungsten alloys for aerospace applications is discussed. The average life at 1850 F and 15,000 psi of the strongest previously reported alloy, Co-25 W-1Ti-1Zr-0.4C, was doubled from 92 to 185 hr by small additions of chromium and rhenium. At 2200 F and 5000 psi, the strongest alloy, Co-25W-1Ti-1Zr-3Cr-2Re-0.4C, had a rupture life of 23 hr; the elevated-temperature rupture strength compared favorably with the strongest available conventional (high-chromium) cobalt-base alloys. Above approximately 2035 F and at reasonably high stress levels (10,000 and 15,000 psi), its stress-rupture life also exceeded those of the strongest known nickel-base alloys, including the NASA tantalum-modified alloy and SM-200. It is particularly significant that even the strongest alloys of this series were readily hot-rolled. Ingots 1/2 in. thick were reduced to 0.065-in. sheet and subsequently cold-rolled to 0.0125-in. sheet. Elongations as high as 31 percent were obtained at room temperature with annealed sheet specimens. The good ductility obtained suggests that these alloys could be fabricated into complex shapes required for various aerospace and other applications. Although the strongest alloys had a chromium content of only 3 percent, they did not oxidize catastrophically in air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call