Abstract

Amorphous silicon dioxide films used as dielectric layers in microelectronic devices are deposited using plasma-enhanced chemical vapor deposition. Because of the presence of hydrogen and nitrogen species in the precursor gases, incorporation of such species in the films can lead to crack formation during subsequent annealing processes up to 1000°C. In this study, the role of film chemistry on the thermo-mechanical behavior of silicon dioxide films is studied with in situ film stress measurements using wafer curvature to maximum temperatures of 1000°C. This is a significant advance because normal wafer curvature can only reach maximum temperatures of around 500°C. The increased temperature range allows for the stress evolution and film chemistry to be examined for the relevant processing conditions. It was found that at temperatures higher than 550°C, hydrogen bond cleavage led to a large stress increase and film chemistry change due to new bonding arrangements between nitrogen and silicon as well as subsequent film densification causing cracking of films. These changes could only be identified with wafer curvature measurements up to 1000°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call