Abstract

Phase-pure LaTaO4 ceramics was prepared by solid-state reaction. Dielectric spectroscopic data as well as differential scanning calorimetric experiments showed the existence of a sequence two high-temperature first-order structural phase transitions. The first phase transition occurs above 160°C (on heating), from the monoclinic P21/c space group at room temperature to the polar orthorhombic Cmc21 group, exhibiting a very large thermal hysteresis probably linked to the reconstructive nature of the structural transition. The second transition occurs around 225°C to the orthorhombic Cmcm space group, with a small thermal hysteresis. Vibrational Raman spectroscopic analyses confirmed these two sequential phase transitions, as well as the thermal hysteresis observed for both first-order transitions in repeated heating and cooling cycles. The existence of a strong monoclinic distortion at room temperature could be related to the presence of defects (oxygen vacancies) in LaTaO4 ceramics, after sintering. Dielectric spectroscopy showed a strong influence of the electric conductivity on the dielectric response with activation energy of dc component of conductivity (0.62eV) compatible with the presence of oxygen vacancies. Far-infrared data confirmed that the extra modes observed in the Raman spectra are forbidden bands, which were activated by defects into the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call