Abstract
The oxide-ion and proton conduction properties of RE3NbO7 (RE=La, Gd, Y, Yb, Lu) compounds were investigated. For the bigger rare-earth cation, i.e. La3+, the compound crystallises in a weberite-type structure and the oxide-ion conductivity is low owing to the lack of intrinsic oxygen vacancies. Consequently, the resultant proton incorporation and conductivity in La3NbO7 are also low. For small rare-earth cations, i.e. from Gd3+ to Lu3+ and for RE=Y, materials adopt a fluorite-like structure confirmed from X-ray powder diffraction. In this latter case, materials include intrinsic oxygen vacancies leading to a higher oxygen conductivity. For these compounds, a proton incorporation takes place at low temperature under wet conditions giving rise to proton conductivity. Nevertheless, both oxygen and proton conductivities are low in these materials, which can be explained by the ordering of oxygen vacancies observed by Transmission Electron Microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.