Abstract

Simultaneous high-temperature and high-pressure studies reveal phase transformation of bulk liquid water to an ice-VII-like structure having an eight coordination. It was demonstrated through this numerical study that the observed high-temperature and high-pressure phase of water obtained upon shock compression and equilibration has high rotational diffusion and thereby the hydrogen dynamics of these crystal structures are significantly complex compared with ice VII. The current work provides new characterization methods for the numerically observed plastic crystal phase of ice at the boundary of the liquid water and ice VII phases in which the molecules have a defined lattice position but rotate freely. It is anticipated that the present work will provide important data and guide new theoretical and experimental investigations in the search for plastic crystal phases of water. The power spectra plots of bulk liquid water subjected to different temperature and pressure conditions have also been presented in this numerical study, demonstrating significant differences between these high-temperature and high-pressure shock-equilibrated phases and those of pure ice VII at 10 GPa and liquid water at ambient temperature and pressure, as well as at elevated pressures and temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.