Abstract

The growth and characterization of high-Tc NbN films formed on room temperature substrates by pulsed laser deposition is described. The growth was performed at a high laser power density (>5 × 108 W/cm2), where the enhanced reactivity of species in the plume is proposed as the mechanism for increased nitrogen incorporation in films on unheated substrates. The Tcs were 16.2 K on MgO and 13 K on SiNx/Si substrates. In addition to electrical transport measurements, the films were characterized using RBS and x-ray diffraction. The particulate density on films grown at high power density was significantly reduced, which is correlated with the Nb target having a smoother morphology, characteristic of a quenched molten surface layer in the ablated area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call