Abstract

Impact experiments, routinely performed at the macroscale, have long been used to study mechanical properties of materials. Microscale high-velocity impact, relevant to applications such as ballistic drug delivery has remained largely unexplored at the level of a single impact event. In this work, we study the mechanical behavior of polymer gels subjected to high-velocity microparticle impact, with strain rates up to 107 s−1, through direct visualization of the impact dynamics. In an all-optical laser-induced particle impact test, 10–24 μm diameter steel microparticles are accelerated through a laser ablation process to velocities ranging from 50 to 1000 m/s. Impact events are monitored using a high-speed multi-frame camera with nanosecond time resolution. We measure microparticle trajectories and extract both maximum and final penetration depths for a range of particle sizes, velocities, and gel concentrations. We propose a modified Clift-Gauvin model and demonstrate that it adequately describes both individual trajectories and penetration depths. The model parameters, namely, the apparent viscosity and impact resistance, are extracted for a range of polymer concentrations. Laser-induced microparticle impact test makes it possible to perform reproducible measurements of the single particle impact dynamics on gels and provides a quantitative basis for understanding these dynamics. We show that the modified Clift-Gauvin model, which accounts for the velocity dependence of the drag coefficient, offers a better agreement with the experimental data than the more commonly-used Poncelet model. Microscale ballistic impact imaging performed with high temporal and spatial resolution can serve as direct input for simulations of high-velocity impact responses and high strain rate deformation in gels and other soft materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.