Abstract

Timetable scheduling is a combinatorial optimization problem that presents formidable challenges for classical computers. This paper introduces a pioneering methodology for addressing the high-speed train timetabling problem through quantum computing. Initially, a comprehensive binary integer programming model, grounded in the space–time network, is proposed (M1). To manage the intricacy of model M1, a knapsack problem reformulation is employed to establish a simplified binary integer programming model (M2). Both M1 and M2 are subsequently converted into quadratic unconstrained binary optimization (QUBO) models to harness the potential of quantum computing. Several techniques, including the Gurobi solver, simulated annealing, and the coherent Ising machine (CIM) quantum simulator, are deployed to solve the model across four distinct scenarios of varying complexity. The findings indicate that CIM quantum simulator outperforms the simulated annealing method in terms of solution quality for medium-scale problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.