Abstract

The possibility of a high-speed and (semi-)continuous titanium production process by the magnesiothermic reduction of titanium subchloride—titanium dichloride (TiCl2) and/or titanium trichloride (TiCl3)—is discussed. When the TiCl3 feed material and magnesium reductant charged into a titanium reaction container were heated at a rate of 0.056 K/s (3.3 K/min) in an argon atmosphere, the temperature of the container rapidly increased above 973 K, and the magnesiothermic reduction of TiCl3 proceeded at a high speed. After the reduction, the reaction product magnesium chloride (MgCl2) and the excess magnesium were removed by leaching or vacuum distillation. An efficient separation process of MgCl2 from titanium metal by a combination of draining and vacuum distillation was also investigated. Under a suitable condition, titanium with 99.5% purity was efficiently obtained. The titanium reaction container showed no signs of damage, thus proving its suitability for the magnesiothermic reduction of TiCl3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.