Abstract

Demands for higher rotational speed and accuracy for effective manufacture of small holes on printed circuit boards and very small precise parts have been increasing remarkably. Aerostatic journal bearings with compound restrictors have greater stiffness than those with conventional inherently compensated restrictors and are one of the most effective candidates to satisfy these demands. In this work, the instability of a rigid rotor supported by aerostatic journal bearings with compound restrictors was investigated numerically and experimentally. It was found that this type of aerostatic bearings showed a much higher threshold speed for instability compared with bearings with inherently compensated restrictors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call