Abstract

The authors developed several special circuits to minimize the decrease in speed caused by parasitics. The common-base circuit assures flat and wide frequency preamplifier response even when V/sub ee/ is unstable because of bond wire inductance. Cascode interconnections between circuit blocks prevent waveform degradation due to line capacitance discharge. The high level of integration prevents the signal speed from decreasing due to chip interfaces and external interference. Using these circuits and Si-bipolar ESPER (emitter-base self-aligned structure with polysilicon electrodes and resistors) transistors whose f/sub T/ was 28 GHz, the authors fabricated three ICs: a preamplifier with a 5.1 GHz bandwidth, a fully integrated automatic gain control (AGC) amplifier with a 3.6 GHz bandwidth, and a decision circuit that operates at 10.6 Gb/s. The authors used these ICs and an avalanche photodiode (APD) to construct a 5 Gb/s optical receiver with a minimum detectable optical power of -26.8 dBm. The speed of the Si ICs exceeded 5 Gb/s.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.