Abstract

In conventional optical communication systems, the transmission signals are regular digital signals. Due to the openness of optical fiber networks, it is rather easy for eavesdroppers to obtain the transmission signals from the public fiber-link and then intercept the message directly. To address this crucial security challenge, in this work we propose a high-speed secure optical communication system in virtue of physical random temporal encryption based on private physical random phase modulation and phase-to-intensity conversion. The proposed physical random temporal encryption is performed by a module composed of a phase modulator (PM) and a chirped fiber Bragg grating (CFBG), and the corresponding decryption is achieved with a similar module composed of an inverse-phase driven PM and an oppositedispersion CFBG. By distributing a constant-amplitude random-phase signal to the local semiconductor lasers deployed in the encryption module and decryption module, a pair of synchronized physical random PM driving signals that are not exchanged on public link can be independently generated, which guarantees the receiver end can correctly decrypt the original transmission message. Our numerical results demonstrate that with the proposed encryption scheme, the regular transmission signal is encrypted as a noise-like signal that can greatly enhance the security of message, and moreover, based on the private synchronized physical random phase modulation, the privacy of encryption and decryption are guaranteed, which prevents the eavesdroppers from intercepting transmission message. This work provides a promising strategy for the implement of high-speed high-security physical-layer optical communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call