Abstract
A scaled-down self-aligned selective-epitaxial-growth (SEG) SiGe HBT, structurally optimized for an emitter scaled down toward 100 nm, was developed. This SiGe HBT features a funnel-shaped emitter electrode and a narrow separation between the emitter and base electrodes. The first feature is effective for suppressing the increase of the emitter resistance, while the second one reduces the base resistance of the scaled-down emitter. The good current-voltage performance - a current gain of 500 for the SiGe HBT with an emitter area of 0.11 /spl times/ 0.34 /spl mu/m and V/sub BE/ standard deviation of less than 0.8 mV for emitter width down to about 0.13 /spl mu/m - demonstrates the applicability of this SiGe HBT with a narrow emitter. This SiGe HBT demonstrated high-speed operation: an emitter-coupled logic (ECL) gate delay of 4.8 ps and a maximum operating frequency of 81 GHz for a static frequency divider.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.