Abstract

Photoinitiated thiol/ene polymerization was used to crosslink a triblock styrene/butadiene/styrene (SBS) polymer of low vinyl content (8%). The crosslinking process was followed by infrared spectroscopy (loss of unsaturation), insolubilization, swelling, and hardness measurements. The photogenerated thiyl radicals react with both the vinyl and the 2-butene double bonds of the copolymer. Concentrations of less than 1 wt % in the trifunctional thiol crosslinker and in the acylphosphine oxide photoinitiator proved to be sufficient to create, within 0.5 s, a permanent chemical network in the elastomeric phase. This UV-curing technology was successfully applied to crosslink rapidly commercial SBS–Kraton® thermoplastic elastomers. It proved also effective in the case of the much less reactive triblock styrene/isoprene/styrene (SIS) polymer which contains no vinyl double bonds. The thiol/ene polymerization was shown to be a much more efficient process to crosslink SBS and SIS thermoplastic elastomers than was the copolymerization of the rubber double bonds with a diacrylate monomer. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1902–1912, 2000

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call