Abstract
Vacuum interrupters, particularly with high short-circuit interruption ability, are mostly equipped with contact systems based on two different principles: the widely used radial magnetic field (RMF) contact and the axial magnetic field (AMF) contact system. In this investigation, contact electrodes performance of an improved RMF system was compared with both an unipolar and a quadrupolar AMF contact system. By using a high-speed complementary metal oxide semiconductor digital video camera, the different systems were observed during arcing under short-circuit conditions at different current levels, concentrating on arc modes development with different arcing times. Contact erosion and thermal stress of the high-current vacuum arc on the contacts was basically evaluated on the basis of contact melting depth, with the result of comparable melting depths at insignificantly higher thermal stress of the RMF versus AMF systems. The microstructure of the copper and chromium compound contact material cross section was analyzed by means of a scanning electron microscope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.