Abstract

An etched photonic crystal (PhC) or holey wedge structure induces index confinement into 850-nm implant-confined vertical-cavity surface-emitting lasers (VCSELs) to engineer the spatial overlap between the optical mode and laser gain for improved high-speed operation and reduced relative intensity noise. Large-signal operation of 12.5 Gb/s is achieved with a single transverse-mode PhC VCSEL and 15 Gb/s with a single transverse-mode holey VCSEL. An excessive current diffusion effect is found when the difference between the electrical and optical diameter is large (>4 mum), which limits the large-signal modulation of single-mode VCSELs. The design rules for optimal single transverse-mode high-speed PhC and holey VCSELs are extracted from a parametric study of their large-signal modulation characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.