Abstract

This investigation into the effect of indirectly extruding Mg–7Sn–1Al–1Zn (TAZ711) alloy at high exit speeds on the microstructure and tensile properties found no evidence of surface cracking, not even at the maximum speed tested of 27 m/min. This high-speed extrudability is attributed to the relatively high incipient melting temperature of the alloy (535 °C), which results from the formation of a thermally stable Mg2Sn phase. All extruded samples exhibited a completely recrystallized (DRXed) structure consisting of coarse DRXed grains with few particles in combination with relatively fine DRXed grains containing numerous fine precipitates. With an increase in extrusion speed, the total amount of Mg2Sn precipitates decreased and the size and quantity of coarse DRXed grains increased due to a rise in temperature during extrusion. This has the effect of reducing the strength of the extruded alloy through a reduction in precipitation and grain-boundary strengthening, yet the elongation of the extruded alloy remains essentially the same due to a loss of ductility caused by the increase in DRXed grain size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.