Abstract

Privacy amplification (PA) is an essential process for high-speed and real-time implementation of a continuous-variable quantum key distribution (CV-QKD) system. This work focuses on the improvement of the performance of PA, and we realize PA with Toeplitz matrix and accelerate it using fast Fourier transform (FFT) on graphic processing unit (GPU). Based on the architectural feature of FFT, we adjust its form of input length and obtained an average speed of PA about 2Gbps with input length ranges from 1Mbits to 128Mbits, which is length-adaptable to satisfy various requirements of CV-QKD systems at different transmission distances. Furthermore, we test this work with different compress ratios of PA, which can also achieve a high implementation speed around 2Gbps. With the method used in this paper, the requirements of PA for the high-speed and real-time CV-QKD system can be entirely satisfied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.